Mathematics
 Higher level
 Paper 3 - calculus

Wednesday 18 November 2015 (afternoon)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 5]

The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is defined as $f: x \rightarrow\left\{\begin{array}{cc}1, & x<0 \\ 1-x, & x \geq 0\end{array}\right.$.
By considering limits, prove that f is
(a) continuous at $x=0$;
(b) not differentiable at $x=0$.
2. [Maximum mark: 10]

Let $f(x)=\mathrm{e}^{x} \sin x$.
(a) Show that $f^{\prime \prime}(x)=2\left(f^{\prime}(x)-f(x)\right)$.
(b) By further differentiation of the result in part (a), find the Maclaurin expansion of $f(x)$, as far as the term in x^{5}.
3. [Maximum mark: 11]
(a) Prove by induction that n ! $>3^{n}$, for $n \geq 7, n \in \mathbb{Z}$.
(b) Hence use the comparison test to prove that the series $\sum_{r=1}^{\infty} \frac{2^{r}}{r!}$ converges.
4. [Maximum mark: 14]

Consider the function $f(x)=\frac{1}{1+x^{2}}, x \in \mathbb{R}$.
(a) Illustrate graphically the inequality, $\frac{1}{5} \sum_{r=1}^{5} f\left(\frac{r}{5}\right)<\int_{0}^{1} f(x) \mathrm{d} x<\frac{1}{5} \sum_{r=0}^{4} f\left(\frac{r}{5}\right)$.
(b) Use the inequality in part (a) to find a lower and upper bound for π.
(c) Show that $\sum_{r=0}^{n-1}(-1)^{r} x^{2 r}=\frac{1+(-1)^{n-1} x^{2 n}}{1+x^{2}}$.
(d) Hence show that $\pi=4\left(\sum_{r=0}^{n-1} \frac{(-1)^{r}}{2 r+1}-(-1)^{n-1} \int_{0}^{1} \frac{x^{2 n}}{1+x^{2}} \mathrm{~d} x\right)$.
5. [Maximum mark: 20]

The curves $y=f(x)$ and $y=g(x)$ both pass through the point $(1,0)$ and are defined by the differential equations $\frac{\mathrm{d} y}{\mathrm{~d} x}=x-y^{2}$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=y-x^{2}$ respectively.
(a) Show that the tangent to the curve $y=f(x)$ at the point $(1,0)$ is normal to the curve $y=g(x)$ at the point $(1,0)$.
(b) Find $g(x)$.
(c) Use Euler's method with steps of 0.2 to estimate $f(2)$ to 5 decimal places.
(d) Explain why $y=f(x)$ cannot cross the isocline $x-y^{2}=0$, for $x>1$.
(e) (i) Sketch the isoclines $x-y^{2}=-2,0,1$.
(ii) On the same set of axes, sketch the graph of f.

